

Columbia Environmental Research Center

River Corridor Habitat Dynamics

Geomorphologists at Work, Geomorphologists at Play:

Geomorphic Research and Resource Management in National Parks

Robert B. Jacobson U.S. Geological Survey Columbia, Missouri

U.S. Department of Interior U.S. Geological Survey

rjacobson@usgs.gov

Work and Play

Play: The <u>Handmaiden of</u> Work

Wolman, M.G., 1995, Earth Surface Processes and Landforms, v. 20, p. 585-591

- Play as exploration of the fundamental, theoretical issues underlying applied Geomorphology
- Play as a social dynamic: how we work (and play) together

Got Geomorphology?

- Restricted definition:
 - Study of the shape of the earth
- Extended definition:
 - Study of the <u>structure</u>, <u>processes</u>, and <u>history</u> that have shaped and continue to shape the surface of the earth (and other planetary bodies)

Scope of Geomorphology

- Inherently interdisciplinary:
 - Geology
 - Hydrology
 - Hydraulics
 - Sediment Transport
 - Soil Mechanics
 - Geochemistry
 - Geophysics

- Climatology
- Pedology
- Ecology
- Civil / Environmental Engineering
- Geographic Info. Science
- Social Sciences
- •

Time, Space, Geomorphology

- Time scale
- Spatial scale
- Integration of scales and disciplines

Timescales of Fluvial Geomorphology

And Data Resources

Spatial Scales: Ecoregion to Valley Segment

Spatial Scales: Channel Units to Particles

Space

- Work: Geomorphic channel unit classification to stratify biological sampling designs
- Play: Fundamentals of hydraulic instabilities and fluvial form

Channel Unit Classification

Architecture of Ozarks Rivers

Current

River,

Ozark

Scenic

Architecture of Ozarks Rivers

Architecture of Ozarks Rivers

Discrete and persistent disturbed and stable reaches

Not uniform rate of energy dissipation

Architecture of the Missouri National Recreation River

Architecture of the Missouri National Recreation River

Discrete and persistent, broad and narrow reaches

Space

- Work: Does land use outside of park boundary affect park aquatic resources?
- Play: Propagation of disturbances through watersheds, cumulative/complex responses

Principal Components Analysis: Basin and Reach Scale

No Smoking Gun

Time

- Work: To what extent is the park subject to future disturbances, ongoing effects of past disturbances?
- Play: Propagation of disturbances through watersheds, cumulative/complex responses, sediment routing

Observation: Ozarks streams are characterized by large accumulations of chert gravel, manifest instability.

Natural or Human-induced Change?

"It's hard to believe that all this was created by natural erosion!"

Missouri Ozarks Land-Use History

Plenty of potential stress, complex interactions

Historical Data on Land-use History

Alluvial Stratigraphic History

Recent increase in gravel deposition, in rivers that have always been gravel-rich

Streambed Elevations Indicate Sediment Waves

Historical Disturbance and Sediment Routing

Sediment Routing Theory: Translation or Dispersion?

Translation

Elevation

Distance Downstream

Dispersion/diffusion

Elevation

Distance Downstream

Channel-network Controls on Sediment Routing

DENDRITIC BASIN Maximum waves

TRELLIS-SHAPED BASIN Minimum waves

Gravel Distribution and Simple Routing Model

Gravel Distribution 1992, 1996, and 2003

- Rate of movement, center of mass:
 - Using 50-year flood, 1993: 100 m y⁻¹
 - Using 11 years (2003-1992): 320 m y⁻¹
- Rate of movement, particles:
 - Historical match to model: 200 1100 m y⁻¹

Time

- Work: What are implications of hydrologic regulation for habitat availability in a park?
- Play: Explore the magnitude and frequency of geomorphic and ecologic processes.

Effective Discharge Calculations

Sediment Transport of Missouri River at Hermann, Missouri

Figure 23. Model input data grids for Crane Bottom. The input map grids were used to parameterize the finite element mesh bed file. A. Elevation grid. B. Bed roughness height (k_s) grid.

Effective Discharge for Habitat Availability and Bed Mobilization

Play Applied to Science and Management

- Parallel Play
 - Multidisciplinary: playing in the same sandbox without interacting across disciplines
- Group Play
 - Interdisciplinary, transdisciplinary: playing in the sandbox without boundaries to address complex environmental problems with holistic understanding

INTERDISCIPLINARY STUDIES

Play Applied to Science and Management

- Complex science issues require scientists to play well with each other, to see the world through other's eyes.
- Difficult management questions require that scientists play well with managers.
- Adaptive management, stakeholder driven management requires that scientists play well with the public.

Geomorphologists at Play, Geomorphologists at Work

 Geomorphology works for many aspects of resource management – integrated disciplines, right time, & right space.

Geomorphic work is never far from geomorphic play. Even the most applied geomorphology project is closely tied to fundamental theoretical issues – field studies almost always provide surprises -- parks provide great opportunities to play!

Playing together is essential. Scientists must play well among themselves, with managers, and with the public.

